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Implicit Finite Element Technology for
Transient Simulation in Electromagnetics

• Goals of the EMSolve project
– research the application of vector finite element methods for full-wave

computational electromagnetics (CEM)
– develop a prototype framework for general-purpose CEM
– solve some interesting application problems in electrostatics,

micromagnetics, optics, accelerators, magnetohydrodynamics, etc.
• This presentation

– Vector finite elements
– Various formulations of Maxwell's equations
– Overview of the EMSolve software architecture
– Results
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Different physical quantities require different
discrete representations

0-FORM 1-FORM 2-FORM 3-FORM

Integral Point Line Surface Volume
Derivative Gradient Curl Divergence None
Continuity Total Tangential Normal None
Hilbert space H(grad) H(curl) H(div) L2
E&M Potential Fields Fluxes Density
Finite element N(nodal) W(edge) F(face) S(volume)

• Scalars can be classified as continuous or discontinuous
• Vectors can be classified as having tangential or normal continuity
• Therefore we have four basic types of physical quantities, and we

require four different discrete representations
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Vector finite element basis functions are used
to discretize vector fields

• Electric field is expanded in terms
of the “edge” basis functions W

– E is uniquely determined in each
cell by the 12 voltages ei

• Magnetic flux density is
expanded in terms of the “face”
basis functions F

– B is uniquely determined in each
cell by the 6 fluxes bi

W t dli j ij•z =� δ

Fi j ijn da•z =� δ

edge element

face element

ei iE t dlZ ’z �E e Wi iZp   where

bi iB ndaZ ’z �B b Fi iZp  where
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Vector finite elements can be defined on the
standard “zoo” elements

• Typically, basis functions are first
defined on a reference element and
then transformed accordingly

• Covariant transformation preserves
line integrals, appropriate for
“edge” basis functions

• Contravariant transformation
preserves surface integrals,
appropriate for “face” basis
functions

~W J W= −1 �

~F J FT=
�

covariant

contravariant
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Linear edge functions defined on tetrahedron

• Six basis functions, one for each edge
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Linear face functions defined on a tetrahedron

• Four basis functions, one for each face
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We can think of differential operators as maps
between function spaces

• The operators      ,           , and
are the standard operators

•  For example,

• The operators      ,           and
are the weak differential operators
(also called adjoint operators)

• For example,

L2H(div)H(curl)H(grad)

H(grad)

H(curl)

H(div)
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Discrete differential operators are simply
sparse matrices

• Matrices depend upon the mesh and the order of the basis functions
• Matrices can easily be combined to form compound discrete operators
• Ideal abstraction for parallel CEM

node
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edge

edge

face
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These discrete differential operators have
some very nice properties

• Self-adjoint PDE’s map to symmetric positive definite matrices
– required for numerical stability of many time integration methods
– makes solution of linear systems easier

• Vector identities strictly satisfied

– required for strict conservation of physical properties
• For Cartesian meshes, these discrete operators reduce to well known

finite-difference formula
– no need to maintain a separate FD code
– peace-of-mind

Ô“Ô ZÑ 0 Ô’Ô“ ZE 0
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Examples

• Laplace’s equation (φ=approximated as 0-form)
 continuous                                                 discrete

•  Laplace’s equation (φ=approximated as 3-form)
 continuous                                                 discrete

Ô’ Ô ZÉ Ñ ê P AP NT Ñ êZ

Ô’ Ô ZÉ Ñ ê QD Q MJ

Z
1 T Ñ ê

{s.p.d

{s.p.d
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Examples (cont.)

• Vector identity
= φ approximated as 0-form:

= φ approximated as 3-form:

• Vector identity
 E approximated as 1-form:

 E approximated as 2-form:

Ô“Ô ZÑ 0
KPÑ ÑZ ?0 

A K Q M1 T TJ

Z ?Ñ Ñ0

Ô’Ô“ ZE 0
QKe eZ ?0 

N P K D1 T TJ

Z ?e e0
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Examples (cont.)

• Vector Helmholtz equation
 continuous                                                       discrete

• Time dependent Maxwell’s equations
 continuous                                                       discrete
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Example time integration methods

• Explicit leapfrog
– “Mass lumping”, recommended on Cartesian regions only.
– Equivalent to classic FDTD method.

• Semi-Implicit leapfrog
– Solve self-consist “mass” matrix at every time step. Stability independent

of conductivity, improved dispersion characteristics
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Example time integration methods (cont.)

• Explicit wave equation

• Semi-Implicit wave equation

• Newmark-Theta variably implicit wave equation
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Some notes on “mass” matrices

• Always symmetric positive definite
• On Cartesian grid, Cholesky decomposition of A has the exact same

sparsity structure as A. We can actually put A-1 on r.h.s.
– D. White, “Solution of Capacitance Systems using Incomplete Cholesky

Fixed Point Iteration,” Communications in Numerical Methods in
Engineering.

• If an unstructured grid is refined properly, the condition number of A
is constant. Hence even simple iterative methods are scalable.

– G. Rodrigue, D. White, J. Koning,”Scalable Preconditioned Conjugate
Gradient Inversion of Vector Finite Element Mass Matrices,” Journal of
Computational and Applied Mathematics.
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It’s time to solve the equations...

• We have converted PDE’s to algebraic equations.
• Fortunately many good solver packages exist, even for massively

parallel computers.

Commercial/public
mesh generation

Commercial/public
visualization

Object-oriented finite
element engine

solvers
Metis
PETSc
Hypre
ARPACK
etc.

C++ wrapper

Python wrapper or C++ main
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EMSolve currently uses PETSc for all parallel
number crunching

• A simple C++ wrapper is employed to make PETSc easier to use, to
provide additional error checking, and to enhance extensibility.

• Vector operations
– y = y + a*x,  y = z + a*x,  y = a*x + b*y,  a = xT y,  a = |x|, etc.

• Matrix-vector operations
– Y = Y + a X,  y = A*x,  z = y + A*x,  a = |A|,  z = diag(A), etc.

• Linear solvers
– 10 Krylov methods, 8 preconditioners (and it is easy to add more…)

• Orderings, partitionings, gather and scatter operations.
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Example C++ main

• This is the main time stepping loop for semi-implicit leapfrog
integration of Maxwell’s equations

 for (int i = 0;i < nstep;i++) {

// magnetic field update
sm.set_all(0.0); // initialize source vector to zero
rhs1 = D * sm; // add current contribution to rhs
rhs1 = rhs1 + Q1 * b; // add Q1 b to rhs, b is the latest magnetic field
sm = K * e; // re-use sm as a temporary intermediate variable
rhs1 = rhs1 + D * sm; // D K e is the curl operator, add to rhs
lsQ.solve(rhs1,b); // solve for the new b

// electric field update
se.set_all(0.0); // initialize source vector to zero
electricCurrent.set_time(i*dt,i); // set present simulation time
electricCurrent.source(se);
rhs2 = A * se; // add current contribution to rhs
rhs2 = rhs2 + R1 * e; // add R1 e to rhs, e is the latest electric field
sm = D * b; // re-use sm as a temporary intermediate variable
rhs2 = rhs2 + KT * sm; // KT D b is the curl operator, add to rhs
lsR.solve(rhs2,e); // solve for the new e

// sensing goes here
snapshot(i,isnap,e,b); // dump all data if it is time
sample(i,e); // write selected fields to disk

}

EMSolve overloaded operators use
PETSc for automatic parallelization
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Example Python script

• The Python interpreter is run on each processor
• Can run interactively, modifying the equations during run-time. Like a

massively parallel Matlab with finite element capability

• for i in range(nstep)

• sm.set_all(0.0)

• rhs1.MatVecMult(G,sm)

• rhs1.MatVecMultPlusVec(Q1,b,rhs1)

• sm.MatVecMult(K,e)

• rhs1.MatVecMultPlusVec(D,sm,rhs1)

• lsQ.solve(rhs1,b)

• se.set_all(0.0);

• electricCurrent.set_time(i,i)

• electricCurrent.source(se)

• rhs2.MatVecMult(A,se)

• rhs2.MatVecMultPlusVec(R1,e,rhs2)

• sm.MatVecMult(D,b)

• rhs2.MatVecMultPlusVec(KT,sm,rhs2)

• lsR.solve(rhs2,e)

EMSolve Python objects have member
functions that use PETSc for automatic
parallelization

Python is extensible, we can easily add application
specific modules as required.
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Example four processor decomposition of
prototype DARHT cell

Mesh decomposition Matrix decomposition

*white-zero, black non-zero
*N = 92,000

Vector decomposition
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Transient simulation of idealized electron
beam in prototype DARHT cell

• Input parameters to EMSolve
– Electric field unknowns:

133645
– Magnetic field unknowns:

128608
– Time step: 1.0e-2 (normalized)
– Time steps: 8000

• Results
– Average iterations per solve: 20

(Jacobi CG)
– Total CPU time on 4 processor

DEC: 3.7 hours

Longitudinal gap voltage vs time

V(t)
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Snapshot of electric field
at time T=200 ∆t
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Transient simulation of eight coupled
induction cells: 2.4 million unknowns
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Prototype DARHT cell eigenmode calculation

• Input parameters to EMSolve-ARPACK
– N=92,000
– 20 eigenvalue-eigenvector pairs
– 40 Arnoldi vectors
– eigenvalue tolerance 1.0e-4
– solve tolerance of 1.0e-7

• Results
– 5 restarts
– 82 linear solves
– 7957 iterations per solve (Jacobi conjugate residual)
– 15 hours on 4 processor Tera node
– 3 hours on 32 processors of Blue
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Seleted eigenmodes

85.6 MHz 181.9 MHz

271.9 MHz 349.5 MHz



EMSolve D. White 27

Electric energy density Poynting vector

An interesting application: optical trapping

• A laser beam is focused towards a dielectric object such that the focus
spot is adjacent to the object. The forces on the object are such that the
object is pulled towards the focus spot

– D. White, “Numerical Modeling of Optical Gradient Traps using the
Vector Finite Element Method,” Journal of Computational Physics.
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Things to do...

• Higher order basis functions
– A big advantage of finite element methods over FD or FV schemes is that

it is possible to develop higher order methods for unstructured grids that
• are provably stable,
• are provably charge conserving and energy conserving,
• accurately model discontinuity of fields across interfaces

• Improve efficiency
– On hybrid grids (structured/unstructured) it is possible to use hybrid time

integration methods (explcit/implicit). Up to 30x speedup.
– Better preconditioners (SPAI,  ILUT, multilevel, …). Up to 5x speedup.

• Physics modules
– Develop as required. Far fields, dispersive/nonlinear media, etc.
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Summary

• EMSolve is a research code used to investigate the utility of vector
finite elements. It is not ready for general release.

• The EMSolve finite element engine uses four different types of finite
element basis functions
– The user has freedom to choose which type of basis function to use for

each field, and what type of differential operators are needed.
• The EMSolve solver uses vectors & matrices as the basic abstractions

– In the solver, the user has freedom to apply standard algebraic operations
with vectors (discrete fields) and matrices (discrete operators)

– The algebraic operations are automatically parallel
• The EMSolve numerical method works (stable, conservative, etc.) on

unstructured grids, and reduces to standard FD on Cartesian grids.


